

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

RECOMENDAÇÃO CD/ IFS № 38, DE 30 DE MARÇO DE 2022

Projeto Pedagógico do Curso de Formação Inicial E Continuada de Eletricista de Sistemas de Energias Renováveis, ofertado pelo campus Estância do IFS.

A PRESIDENTE DO COLÉGIO DE DIRIGENTES DO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE faz saber que, no uso das atribuições legais que lhe confere a Lei nº 11.892 de 29 de dezembro de 2008 e o Art. 11 do Estatuto do IFS, considerando o Processo SEI / IFS n° 23463.000097/2022-22,

RESOLVE:

I – RECOMENDAR, ad referendum, a implementação do Projeto Pedagógico do Curso de Formação Inicial e Continuada de Eletricista de Sistemas de Energias Renováveis, ofertado pelo campus Estância do Instituto Federal de Educação, Ciência e Tecnologia de Sergipe – IFS, conforme anexo.

II - Esta recomendação entra em vigor nesta data.

Aracaju, 30 de março de 2022.

Ruth Sales Gama de Andrade Presidente do Colégio de Dirigentes/IFS

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

PROJETO PEDAGÓGICO DO CURSO

DE FORMAÇÃO INICIAL E CONTINUADA DE ELETRICISTA DE SISTEMAS DE ENERGIAS RENOVÁVEIS

APROVADO PELO COLÉGIO DE DIRIGENTES RECOMENDAÇÃO CD/ IFS N° 38, DE 30 DE MARÇO DE 2022

Aracaju 2022

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Dados Institucionais

CNPJ: Reitoria: 10.728.444/0001-00.

Campus Estância: 10.728.444/0006-06.

Razão social: INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

DESERGIPE.

Nome fantasia: IFS.

Esfera administrativa: FEDERAL.

Endereço: Rua Café Filho, 260, Bairro Valter Cardoso Costa, Estância, Sergipe.

Telefone: (79) 3711 – 3291.

E-mail:proen@ifs.edu.br/reitoria@ifs.edu.br

Curso de Formação Inicial e Continuada de Eletricista de Sistemas de EnergiasRenováveis.

- 1- Nível de oferta: Ensino Fundamental.
- 2- Eixo Tecnológico: Controle e processos industriais.
- 3- Modalidade de oferta: presencial.
- **4- Carga Horária:** 200 horas.
- 5- Regime de matrícula: Modular.
- **6- Vagas por turma:** 40.
- **7- Escolaridade mínima:** Ensino Fundamental I (1º a 5º) Completo.
- 8- Turno de oferta: Diurno.
- 9- Duração: 4 meses.
- **10- Categoria do Curso:** (X) Formação Inicial () Formação Continuada.
- **11-Público-alvo:** Maiores de 18 anos e com Ensino Fundamental I (1º a 5º ano) completo.
- 12- Local de Oferta: Campus Estância.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

SUMÁRIO

1. PERFIL PROFISSIONAL DO EGRESSO	5
2. JUSTIFICATIVA	5
3. OBJETIVOS	9
3.1 Objetivo Geral	9
3.2 Objetivos Específicos	9
4. ÁREAS DE ATUAÇÃO	10
5. PRÉ-REQUISITOS DE ACESSO	10
6. MECANISMOS DE ACESSO	10
7. ORGANIZAÇÃO CURRICULAR	10
7.1. Fundamentação Legal	10
7.2 Estrutura Curricular	11
8. CRITÉRIOS DE APROVEITAMENTO DE CONHECIMENTOS	12
9. CRITÉRIOS DE AVALIAÇÃO, RECUPERAÇÃO, PERMANÊNCIA E ÊXITO	12
10. CERTIFICADO	14
11. INSTALAÇÕES E EQUIPAMENTOS	14
12. PESSOAL DOCENTE E TÉCNICO ADMINISTRATIVO	17
13. EMENTAS	19
14. APÊNDICE - DECLARAÇÃO DO(A) DIRETOR(A) GERAL	29

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

1. PERFIL PROFISSIONAL DO EGRESSO

Ao final do curso o Eletricista de Sistemas de Energias Renováveis deve ser capaz de analisar, quantificar e realizar instalação, reparação e manutenção elétrica de sistemas de geração de energia residencial e comercial através de painéis solares fotovoltaicos e/ou pequenos aerogeradores, considerando a legislação vigente e normas aplicáveis à qualidade, à saúde, à segurança e ao meio ambiente.

2. JUSTIFICATIVA

As rápidas e constantes inovações científicas que provocaram o avanço tecnológico vêm desencadeando, nos últimos anos, uma renovação da educação, enquanto variável estratégica para o processo de globalização da economia. Questões conjunturais da mais vastaordem estão passando a exigir das Instituições de Ensino novos paradigmas para desenvolvimento dos mecanismos de aquisição do saber, como formas do estabelecimento deefetivas mudanças socioeconômicas necessárias ao fortalecimento dos países em desenvolvimento (IFS,2019)¹.

As Instituições de Ensino (IE) do Brasil estão vivenciando momentos de mudança como resultado do processo de avaliação interna e externa pelo qual vêm passando nos últimostempos. É, pois, papel de cada IE lutar para não ficar à margem das exigências do mundo do trabalho. Neste sentido o Instituto Federal de Sergipe (IFS) vem se esforçando para repensar asua prática acadêmica e administrativa e procedendo a estudos que propiciem oestabelecimento de novas linhas de ação (IFS,2019)¹.

Não há como negar que as necessidades regionais em recursos materiais, humanos e financeiros são muitas e que a disponibilidade de tais recursos é de pequena envergadura, o que faz com que entraves ao desenvolvimento se arrastem ao longo das décadas. O aumento da força de trabalho, qualificada em nível técnico e a qualidade desse insumo, serão fatores balizadores no aproveitamento destes recursos.

Destinado a formar profissionais qualificados, o Instituto Federal de Sergipe através de

¹ Instituto Federal de Sergipe. Projeto pedagógico do curso técnico de nível médio em sistemas de energia renovável na forma integrada. Disponível em: https://sig.ifs.edu.br/sigrh/downloadArquivo https://sig.ifs.edu.br/sigrh/downloadArquivo https://sig.ifs.edu.br/sigrh/downloadArquivo https://sig.ifs.edu.br/sigrh/downloadArquivo=367424&key=8853aad53f0e0fa226d64ed6c5134246. Acesso em 17/03/2022.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

seus cursos, pretende, desta forma, contribuir significativamente para o desenvolvimento do Estado de Sergipe, Território Sul Sergipano e Regiões do Nordeste Brasileiro. De acordo com a Secretaria de Planejamento do estado de Sergipe², o território Sul Sergipano é composto por 11 municípios (Arauá, Boquim, Cristinápolis, Estância, Indiaroba, Itabaianinha, Pedrinhas, Salgado, Umbaúba, Santa Luzia do Itanhy e Tomar do Geru) e, dentre esses municípios, tem- se que mais de 25% da população residente encontra-se em Estância de acordo com estimativas feitas pelo IBGE em 2014³.

Outro dado importante sobre a região Sul Sergipana evidencia a importância que o município de Estância tem para a região, o qual se trata do PIB (Produto Interno Bruto) em que Estância representa quase a metade (49,4%) do PIB total da região, sendo que grande parteda composição do PIB de Estância e, consequentemente, da região Sul Sergipana estárelacionada a atividade industrial. Como resultado destes dados tem-se que 43% dos empregos formais gerados na região Sul Sergipana estão concentrados no município de Estância².

Não só as indústrias, mas toda a sociedade de modo geral estão cada vez mais demandando abastecimento energético, visto que sem energia não há possibilidade de as indústrias entrarem em atividade, da agricultura ter efetividade, dos meios de transporte circularem pelas ruas, ou seja, toda a vida urbana e do campo seria prejudicada. Visando issoé que o tema da sustentabilidade está cada vez mais em destaque e os gestores das empresas edas indústrias estão adotando a própria geração energia de forma renovável (energia solar, eólica, entre outras) para poder suprir a sua demanda energética de modo a impactar da menorforma possível o meio ambiente e elevar o lucro líquido resultante do menor custo da utilização de energia elétrica (IFS,2019)¹.

Até o 2º semestre de 2021 o volume de potência elétrica instalada à rede de distribuição de energia no Brasil, usando sistemas de geração de energia com painéis fotovoltaicos, têm aumentado de forma exponencial desde 2012 e além disso o custo de instalação destes sistemas tem reduzido de forma significativa, tornando o uso de energia solar uma realidade cada vez

² SERGIPE. Plano de Desenvolvimento do Território do Alto Sertão Sergipano. Secretaria de Estado doPlanejamento de Sergipe. Aracaju: SEPLAG, 2008. 90 p.

³ SANTOS, Wesley Oliveira. **Estudo de Mercado em Estância**. Instituto Federal de Educação, Ciência eTecnologia de Sergipe. Aracaju: IFS/NAEC, 2017. 128p.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

mais comum, nas indústrias, empresas, estabelecimentos comerciais e residências. Além da redução de custo de instalação, surgiram várias linhas de crédito e de financiamento de baixo custo de sistemas de energias renováveis, para pessoas físicas e jurídicas, o que torna ainda mais acessível a utilização deste tipo de energia. Vale destacar que além da questão sustentável da utilização de energia solar, por exemplo, há também o retorno financeiro sob o investimento, visto que é possível reduzir o valor da fatura de energia elétrica em até 95%, o que faz deste investimento mais rentável em comparação aos investimentos mais conhecidos da população como a caderneta de poupança, fundos de renda fixa e tesouro direto (IFS,2019)¹.

Os estados do nordeste brasileiro possuem regiões favoráveis para a instalação de painéis solares bem como de parques eólicos como pode ser comprovado nos dados referentesa radiação solar e o potencial eólico fornecidos pelo Centro de Referência para Energia Solare Eólica Sérgio Brito (CRESESB). Conclui-se que há um grande mercado a ser explorado, assim como oportunidade para se profissionalizar especificamente na área de energias renováveis. Diante do exposto, um dos principais motivos que corroboram com estes dados daANEEL⁴ é o fato de ainda existirem poucos profissionais qualificados especificamente na áreade energias renováveis.

Conforme Knopki⁵ (2018, p.7):

O crescimento das energias renováveis no Brasil trouxe consigo um novo mercado e, consequentemente, uma demanda por profissionais com novas habilidades e conhecimentos. A literatura comprova que a falta ou má qualificação dos profissionais influencia negativamente a reputação de uma tecnologia, provocando, em casos extremos, descrédito da população. A carência por profissionais qualificados é causada também pela falta ou insuficiência de cursos com qualidade para a formação.

A fim de solucionar esta situação, o Ministério da Educação (MEC) lançou o Programa para Desenvolvimento em Energias Renováveis e Eficiência Energética na Rede Federal, o

⁴ ANEEL, Atualização das projeções de consumidores residenciais e comerciais com microgeração solarfotovoltaicos no horizonte 2017-2024. Nota técnica n° 0056/2017- SRD/ANEEL, 24/05/2017.

⁵ KNOPKI, Roberta, CARVALHO, Adriana, TERRA, Ana, et al. Desenvolvimento de itinerários formativos paraa rede federal de educação profissional, científica e tecnológica na área de energia solar fotovoltaica. **Profissionaispara energia do futuro**. p. 7. Brasil, 2018.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

EnergIF, por meio da Secretaria de Educação Profissional e Tecnológica (Setec/MEC), em parceria com a Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), denominado Profissionais para Energias do Futuro. Conforme Knopki⁶ (2018, p.22):

Essa parceria, acordada em janeiro de 2016, teve o objetivo de ajudar a estruturar as bases da educação profissional na Rede Federal de Educação Profissional, Científica e Tecnológica (Rede Federal) de EPCT nas áreas de energias renováveis e eficiência energética.

Observando o cenário atual e a preocupação constante com o meio ambiente, o Campus Estância do Instituto Federal de Sergipe já realiza ações voltadas para sustentabilidade por meio de projetos de pesquisa e extensão, assim como um curso de Sistemas de Energia Renovável na forma integrada e somado a isso a grande oportunidade de mercado regional e nacional, as características da atividade econômica do município e o apoio e incentivo do MECatravés do EnergIF, tem-se que a conjuntura atual e as perspectivas futuras, justificam a abertura de um curso FIC em Eletricista de Sistemas de Energias Renováveis no Campus Estância.

Este curso insere-se como peça importante no desenvolvimento socioeconômico do Estado de Sergipe, e em especial a cidade de Estância, tendo em vista o planejamento curricular e estrutural coadunado com a política governamental na esfera federal, estadual e municipal no tocante aos aspectos sociais, econômicos e culturais e seu desenvolvimento através da Ciência e Tecnologia. Cabe destacar ainda, que no Estudo de Mercado em Estânciade 2017 realizado pelo NAEC/PRODIN, o eixo de Controle Processos Industriais possui alta viabilidade de implantação.

Com o intuito de suprir esta necessidade de adequação e/ou adaptação a este recente contexto, a busca de profissionais bem qualificados se faz necessária e é uma demanda de mundo do trabalho que tem crescido nos anos recentes.

Frente a essas necessidades, o curso FIC em Eletricista de Sistemas de Energias Renováveis, do Campus Estância traz uma alternativa relevante para a formação de novos profissionais nesta área, preparando-os para o entendimento, utilização e adaptação de novas tecnologias bem como para as inovações tecnológicas.

A proposta de um FIC em Eletricista de Sistemas de Energias Renováveis, respaldada no

⁶ KNOPKI, Roberta, JULIATTO, Antônio M., CARVALHO, Adriana, et al. Ministério da educação entra na ondadas energias renováveis. **Profissionais para energia do futuro**. p. 22. Brasil, 2018.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

contexto histórico, na organização da educação profissional prescrita pela legislação vigente, nas condições objetivas e potenciais existentes no Estado de Sergipe e na experiência acumulada pelo Centro Federal de Educação Tecnológica de Sergipe, pretende formar profissionais que consigam aliar o domínio específico das tecnologias ligadas ao ramo profissional da Energia Renovável no atual contexto e nas perspectivas de um futuro cada vez mais sustentável.

Portanto, o FIC em Eletricista de Sistemas de Energias Renováveis, do Campus Estância, visa a preparação de profissionais que detenham simultaneamente, uma formação técnicocientífica sólida em conformidade com as tecnologias atuais empregadas pelo setor produtivo em nosso Estado, não se restringindo a ele, mas o qualificando e dando-lhe a possibilidade de ser inserido em outros contextos regionais, proporcionando-lhes a construção de saberes e conhecimentos gerenciais necessários aos processos de geração de energiasustentável, sem, no entanto, perder a dimensão social e a visão humanista do processo produtivo.

3. OBJETIVOS

3.1 Objetivo Geral

Formar profissionais para instalar e manter sistemas de Energias Renováveis de acordo com a legislação vigente e normas aplicáveis à qualidade, à saúde, à segurança e ao meio ambiente.

3.2 Objetivos Específicos

- Capacitar profissionais para montar sistemas físicos de Sistemas de Energias Renováveis;
- Formar profissionais com a competência de instalar sistema elétrico de geradores de Sistemas de Energias Renováveis;
- Habilitar profissionais a realizar manutenção de Sistemas de Energias Renováveis.
- Relacionar as normas técnicas e a legislação vigentes à necessidade de uma atuação responsável e ética no que tange à qualidade, à saúde, à segurança e ao meio ambiente.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

4. ÁREAS DE ATUAÇÃO

Constroem, instalam, ampliam e reparam redes e linhas elétricas, de comunicação e de sistemas de energias renováveis. Instalam, programam e reparam equipamentos. Para tanto, planejam suas atividades, elaboram relatórios de informações e trabalham cumprindo normas técnicas e de segurança (CBO 7321-40⁷).

5. PRÉ-REQUISITOS DE ACESSO

Para acesso ao Curso de Formação Inicial e Continuada de Eletricista de Sistemas de Energias Renováveis o candidato deverá ter a idade mínima de dezoito anos e ter concluído o Ensino Fundamental I (1º a 5º ano).

6. MECANISMOS DE ACESSO

O acesso se dará através de Edital a ser divulgado para cada edição do curso.

7. ORGANIZAÇÃO CURRICULAR

7.1. Fundamentação Legal

Este Projeto Pedagógico de Curso foi elaborado em observância ao disposto na Constituição Federal de 1988, Decreto nº 5.154, de 23 de julho de 2004; Decreto nº 5.840, de 13 de julho de 2006; Decreto nº 8.268, de 18 de junho de 2014; Lei nº 9.394, de 20 de dezembro de 1996; Lei nº 11.741, de 16 de julho de 2008; Lei nº 11.892, de 29 de dezembro de 2008; Lei nº 12.513, de 26 de outubro de 2011; Parecer CNE/CEB nº 11 de 09 de maio de 2012; Portaria nº 12/2016, de 03 de maio de 2016; na Resolução 16/2020/CS/IFS e no Regulamento da Organização Didática.

⁷ BRASIL. Classificação Brasileira de Ocupações: CBO – 2010 – 3. ed. Brasília: MTE, SPPE, 2010.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

7.2 Estrutura Curricular

O currículo se organizará a partir de dois núcleos curriculares, o Socioambiental e o Profissional, que reunirão conteúdos em unidades curriculares, cada um com sua carga horária específica.

O núcleo Socioambiental será composto por duas Unidades Curriculares, que conduzirão o cursista a conhecimentos organizados em torno dos conceitos de segurança do trabalho e modelo de negócios com ênfase nos conceitos de sustentabilidade e impactos ambientais associados às atividades das instalações de sistemas de energias renováveis.

O núcleo Profissional conduzirá o aluno para as conceituações e as práticas que o tornarão capazes de instalar sistemas fotovoltaicos, com entendimento das normas técnicas e condutas éticas e com segurança nas atividades de instalação.

Quadro 1: Estrutura Curricular do Curso de Formação Inicial e Continuada de Eletricista de Sistemas de Energias Renováveis.

	PERÍODO						
NÚCLEO DE		NÚMERO DE AULAS					
FORMAÇÃO	DISCIPLINA	Teór		Práti			
TORMAÇÃO		Presencial	EAD	Presencial	EAD		
	Medidas de Segurança do	_	_	_	_		
	Trabalho Aplicadas ao Setor	5	0	5	0		
Socioambiental	Fotovoltaico.						
	Estudo de Viabilidade de						
	Negócio.	10	0	0	0		
	Eletricidade básica aplicada a Sistemas Fotovoltaicos.	42	0	16	0		
	Eletricidade experimental aplicada a Sistemas Fotovoltaicos	6	0	14	0		
	Medidas elétricas aplicadas a Sistemas Fotovoltaicos.	6	0	14	0		
	Fundamentos de Energia Solar Fotovoltaica.	14	0	4	0		
Profissional	Tecnologia Solar Fotovoltaica: Módulos, Arranjo, Células.	9	0	9	0		

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

	Sistemas Fotovoltaicos: Isolados, conectados à Rede, Híbridos, Bombeamento de Água.	14	0	14	0
	Montagem de Sistemas Fotovoltaicos.	16	0	42	0
Carga horária parcial		122 118			
Carga Horária Total		240			
Número de semanas do curso 18		8			

Quadro 2: Resumo da carga horária do Curso de Formação Inicial e Continuada de Eletricista de Sistemas de Energias Renováveis.

RESUMO DA ESTRUTURA CURRICULAR					
Carga horária teórica 101,67 h					
Carga horária prática	98,33 h				
Carga horária total	200 h				

8. CRITÉRIOS DE APROVEITAMENTO DE CONHECIMENTOS

Os cursos FIC, por se tratarem de cursos de curta duração, não são passíveis de aproveitamento de estudos anteriores, ressalvados os conhecimentos prévios dos educandos, quando se tratar de cursos a serem ofertados através da Rede CERTIFIC, os quais obedecerão aos critérios de aproveitamento regulamentados pela referida Rede.

9. CRITÉRIOS DE AVALIAÇÃO, RECUPERAÇÃO, PERMANÊNCIA E ÊXITO

A avaliação da aprendizagem será contínua, permanente, cumulativa, processual, formativa e articulada, considerando-se as competências gerais e específicas do curso. A avaliação se dará por meio da utilização de, no mínimo, 2 (dois) instrumentos por componente curricular, a fim de orientar as intervenções pedagógicas nos processos de ensino e aprendizagem, contemplando abordagens que valorizem mais os aspectos qualitativos e resultados ao longo do processo.

Os instrumentos avaliativos serão realizados de forma diversa e múltipla, contemplando todas as oportunidades que garantam ao professor verificar as condições de aprendizagem e permitam os ajustes necessários ao êxito da prática pedagógica e implementação de novas

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

oportunidades de aprendizagem. Assim, a avaliação poderá ser realizada através de relatórios descritivos de tarefas, provas, trabalhos, relato de experiências e de saberes anteriores ao curso, oficinas, portfólios, seminários, visitas técnicas, aplicação prática dos conhecimentos em laboratórios, unidades de produção, atividades comunitárias, entre outros.

Os critérios de avaliação de cada componente curricular a serem adotados serão apresentados pelos professores aos educandos no início do curso, garantindo o direito ao conhecimento sobre quantidade, valor, bem como aos instrumentos avaliativos aos quais serão submetidos. Após a sua aplicação, os instrumentos utilizados para a avaliação escolar deverão ser analisados e comentados pelos professores com os educandos, objetivando redefinir metas e prioridades e fazer ajustes nas atividades pedagógicas; bem como constituir-se em mecanismode auto avaliação e propiciar nova oportunidade de aprendizagem e reorganização dos conhecimentos. E após a análise conjunta, os instrumentos de avaliação deverão ser devolvidos aos discentes.

Será assegurada adaptação curricular, quando necessária, para estudantes com necessidades específicas, sempre com parecer do Núcleo de Atendimento às Pessoas com Necessidades Específicas (NAPNE) do Campus.

Ao aluno que não atingir a média dentro das avaliações regulares, lhe será garantida recuperação no componente curricular onde obteve nota insuficiente para aferir sua aprendizagem, conforme o ROD.

Será considerado aprovado o educando que obtiver nota, em cada componente curricular, igual ou superior a 6,0 (seis) pontos. A frequência mínima para aprovação será de 75% (setentae cinco por cento) da carga horária presencial total do curso, compreendendo aulas teóricas e/ou práticas. O docente registrará diariamente o conteúdo desenvolvido e a frequência dos educandos nas aulas. Quanto à avaliação, deverá ser registrada assim que for cumprida a etapa. As justificativas de faltas, assim como as solicitações para realização de 2ª chamada de avaliações só serão aceitas nos seguintes casos: licença médica, óbito de familiares, sinistro, obrigações decorrentes de serviço militar obrigatório, licenças maternidade ou paternidade e representação oficial. Caso o modelo de avaliação perdida pelo educando não permita sua repetição, deve ser garantido ao educando o direito de realizar uma avaliação equivalente.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

10. CERTIFICADO

Após integralizar todas as disciplinas e demais atividades previstas neste Projeto Pedagógico de Curso, o aluno fará jus ao Certificado de Eletricista de Sistemas de Energias Renováveis, com 200 horas.

11. INSTALAÇÕES E EQUIPAMENTOS

Quadro 3: Instalações disponíveis para o Curso de Eletricista de Sistemas de Energias Renováveis.

Item	INSTALAÇÕES	Quantidade
1.	Salas de aula	12
2.	Laboratório de Informática	04
3.	Laboratório de Eletricidade e Eletrônica	01
4.	Laboratório de Instalações Elétricas	01
5.	Telhado para treinamento de instalação de Sistemas Fotovoltaicos	01
6.	LEHSA solar	01
7.	Laboratório de Sistemas Elétricos de Potência.	01
8.	Usina fotovoltaica conectada à rede de 72 kWp	01
9.	Biblioteca	01
10.	Sala de professores	01

Laboratórios de Informática

Cada laboratório possui área de 64m² com 25 computadores com software para edição de documentos e projetos e projetor multimídia.

Laboratório de Eletricidade e Eletrônica

Possui área de 64m² com os equipamentos listados no quadro 4.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Quadro 4: Equipamentos do laboratório de Eletricidade e Eletrônica.

Item	Equipamento	Unidade	Quantidade
1.	Computadores.	UND	10
2.	Multímetro elétrico.	UND	10
3.	Gerador de função arbitrária arbitrário 25mhz.	UND	5
4.	Protoboard.	UND	20
5.	Osciloscópio digital wvga.	UND	7
6.	Fonte alimentação simples.	UND	7

Laboratório de Instalações Elétricas

Possui área de 64m² com os equipamentos listados no quadro 5.

Quadro 5: Equipamentos do laboratório de Instalações elétricas.

Item	Equipamento	Unidade	Quantidade
1.	Baias para instalação de dispositivos elétricos residenciais	UND	5
2.	Bancada didática para práticas em instalações elétricas residenciais e industriais.	UND	5
3.	Stringbox para prática de instalações de SFCR.	UND	5
4.	Kit de ferramentas para práticas de instalações residenciais.	UND	5
5.	Kit de ferramentas para instalação de SFCR.	UND	5
6.	Capacete de segurança com julgar.	UND	20
7.	Escada multifuncional 4x4 de alumínio com 16 degraus.	UND	1
8.	Óculos de segurança.	UND	20
9.	Luvas de proteção mecanica com face da palma dos dedos e punho em borracha para boa aderência e grande resistência contra abrasão.	UND	20
10.	Luvas de proteção elétrica 1kv.	UND	1
11.	Botas de proteção com fechamento em elastico lateral e biqueira de aço soft.	UND	20

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

12.	Cinto paraquedista para trabalho em altura com proteção lombar e talabarte.	UND	2
13.	Trava queda auto retrátil de 5m.	UND	2
14.	Kit de primeiros socorros.	UND	1
15.	Micro inversor solar apsystems yc600 127v c/ cabo ac e end cap.	UND	1
16.	Medidor de energia solar mod. Mes 100 digital portátil.	UND	1

Telhado para treinamento de instalação de Sistemas Fotovoltaicos

Telhado de telhas cerâmicas com 1,8 metros de altura, 6 metros de comprimento e 4 metros de largura com sistema de fixação de módulos fotovoltaicos em alumínio para telha cerâmica e 6 módulos fotovoltaicos para treinamento de fixação.

LEHSA solar

O LEHSA solar é uma instalação multidisciplinar que possui a estrutura de um estacionamento solar fabricado em aço galvanizado com cobertura de módulos fotovoltaicos que fazem parte de um SFCR de 2,01 kWp.

Laboratório de Sistemas Elétricos de Potência.

O Laboratório de Sistemas elétricos de potência possui um campo de postes de distribuição e equipamentos característicos das redes de distribuição de energia local, sem conexão com a rede, para estudos dos sistemas de distribuição e equipamentos elétricos.

Usina fotovoltaica

A usina fotovoltaica do campus estância está instalada no telhado do edifício da bibliotecae possui potência de 73,92 kWp, com 192 módulos fotovoltaicos de 385 Wp cada, dois inversores de 30 kWp e uma área instalada de aproximadamente 379,33 m².

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Biblioteca

Com a construção do novo campus em outubro de 2014, que representou um investimento da ordem de R\$ 6 milhões, a Biblioteca Gilberto Amado tem capacidade para receber 45 mil livros. Até 31 de dezembro de 2021, o acervo contava com 3.609 títulos e 10.441 exemplares, entre livros didáticos e de lazer, dicionários, enciclopédias, normas da ABNT, CDse DVDs, audiolivros, periódicos, folhetos e mapas.

O espaço é aberto à comunidade em geral. O horário de funcionamento é das 8h às 22h, sem intervalo para almoço. A estrutura ocupa uma área de 600 m² e inclui sala de multimídia dotada de 10 computadores para pesquisa; duas salas com TV e DVD e 12 mesas de estudo em grupo; 12 cabines de estudo individual e mais as salas de acervo, da coordenação e do processamento técnico.

12. PESSOAL DOCENTE E TÉCNICO ADMINISTRATIVO

Os Quadros 6 e 7 apresentam os docentes do Campus Estância que ministram disciplinas no curso de Eletricista de Sistemas de Energias Renováveis e os técnicos administrativos vinculados ao curso, respectivamente.

Quadro 6: Pessoal Docente do Curso de Eletricista de Sistemas de Energia Renovável.

Nome	Formação Inicial	Titulação	Currículo Lattes	Regime de Trabalho
Alessandro Viana Fontes	Engenharia Elétrica	Mestrado	http://lattes.cnpq.br/195 0490984892815	DE
Danilo Dias Tannus	Engenharia Eletrônica	Mestrado	http://lattes.cnpq.br/852 2973647512683	DE
Dennis Viana Santana	Engenharia Elétrica	Mestrado	http://lattes.cnpq.br/193 6763571544917	DE
Diego Déda Gonçalves Brito Cruz	Engenharia Eletrônica	Mestrado	http://lattes.cnpq.br/286 7381839606405	DE
Matheus Canuto Oliveira	Engenharia Eletrônica	Mestrado	http://lattes.cnpq.br/550 2665688715134	DE
Phillipe Cardoso Santos	Engenharia Eletrônica	Doutorado	http://lattes.cnpq.br/099 1318831047143	
Roberto da Silva Macena	Engenharia Elétrica	Mestrado	http://lattes.cnpq.br/876 7870129183250	DE

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Quadro 7: Pessoal Técnico Administrativo

Nome	Formação	Regime de trabalho	Cargo
Lucas de Andrade Carvalho Costa	Especialização	40h	Técnico de Laboratório
Ubiramar de Souza Passos Júnior	Especialização	40h	Técnico de Laboratório
Suellen Regina Araujo Batista Pereira	Técnico em Química	40h	Assistente de Laboratório
Shirleyde Dias do Nascimento	Mestrado	40h	Pedagoga
Cassiana Nascimento	Mestrado	40h	Pedagoga
Adriana Gois Costa	Especialização	40h	Assistente de Aluno
Dayane de Oliveira Barbosa	Graduação	40h	Assistente de Aluno
Suellen Karolyne Fernandes Ferro	Técnico em Informática	40h	Assistente de Aluno
Maria Ilda Alves de Oliveira	Especialização	40h	Enfermeira
Ingrid Fabiana de Jesus Silva	Especialização	40h	Bibliotecário - Documentalista
Jhon Maycon Alves Santos	Ensino Médio	40h	Auxiliar de Biblioteca
Mauricio Lourenço Rodriguesda Silva	Mestrado	40h	Auxiliar de Biblioteca
Manuela Vilanova Barbosa Alves	Mestrado	30h	Psicóloga

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

13. EMENTAS

Curso	Eletricista de Sistemas de Energias Renováveis					
Disciplina	Medidas de Segurança do Trabalho Aplicadas ao Setor Fotovoltaico. Período: 1°					
			Nº de Aulas	;		
Carga	8,33 h.	Teóricas	Práticas	Total	l	
Horária		5	5	10)	
Ementa						

Ementa

Lista com riscos que envolvem a atividade fim. Riscos na instalação e manutenção. Lista de equipamentos de proteção. Utilização apropriada de EPI e EPC no exercício da atividade. Conhecimento sobre a norma NR10. Lista de equipamentos de proteção. Utilização apropriada de EPI e EPC no exercício da atividade. Conhecimento sobre a norma NR35. Orientação de primeiros socorros.

Ênfase Socioambiental

Relacionar a temática de segurança do trabalho com os impactos ambientais e sociais que envolvem a instalação de sistemas de energias renováveis.

Ênfase Profissional

Avaliar os riscos inerentes à atividade. Aplicar a NR 10 (trabalho com eletricidade). Aplicar a NR 35 (trabalho em altura). Conhecer e aplicar técnicas de primeiros socorros.

Bibliografia Básica

GONCALVES, Danielle Carvalho; GONCALVES, Isabelle Carvalho; EDWAR ABREU GONÇALVES, Edwar Abreu. **Manual de segurança e saúde no trabalho**. 7ª ed. São Paulo: LTr,2018. 1440 p. ISBN 9788536195018.

MELO, Francisca Dayane Carneiro. Instalador de sistemas fotovoltaicos. Brasília: Profissionais para energias do futuro, 2018.

Bibliografia Complementar

COSTA, Antonio Tadeu. Manual de Segurança e Saúde no Trabalho. 6. Ed. São Paulo: Editora Difusão, 2011.

ORGANIZADOR CELSO AUGUSTO ROSSETE. Segurança do trabalho e saúde ocupacional. Pearson 180 ISBN 9788543014845.

PRETTI, Gleibe; SANTOS, Marcos Oliveira. A NOVA SEGURANÇA E MEDICINA DO TRABALHO. 1ª ed. São Paulo: LTr, 2019. 152 p. ISBN 9788530100131.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Curso	Eletricista de Sistemas de Energias Renováveis						
Disciplina	Estudo de	Viabilidade de Negócio. Período : 1º					
Nº de Aulas							
Carga	8,33 h.	Teóricas Práticas Total					
Horária	0,35 H.	10 0 10					
Ementa							

Panorama global da energia solar; Modelos de negócio; Análise da viabilidade econômica das usinas solares; Análise de fluxo de caixa; Taxa Interna de Retorno (TIR); Valor Presente Líquido (VPL); Modelo Orçamentário; Modelos de financiamento; Plano de negócio, relacionar o modelo de negócio com o tema da sustentabilidade.

Ênfase Socioambiental

Relacionar o tema de modelo de negócios com sustentabilidade para agregar valor a oferta de serviço de instalação de sistemas de energias renováveis.

Ênfase Profissional

Analisar o panorama global da energia solar com ênfase nos modelos de negócios e introduzir conceitos sobre temas econômicos e sustentabilidade que envolvem o setor de energias renováveis.

Bibliografia Básica

MAXIMIANO, Antonio Cesar Amaru. Empreendedorismo. São Paulo: Pearson Prentice Hall, 2012. 170 p. ISBN 9788564574342.

CHIAVENATO, Idalberto; SAPIRO, Arão. Planejamento estratégico: fundamentos e aplicações. 2. ed. Rio de Janeiro: Elsevier, 2010. 341 p. ISBN 9788535226669.

Bibliografia Complementar

LEMES JUNIOR, Antonio Barbosa. Administrando micro e pequenas empresas empreendedorismo & gestão. 2. Rio de Janeiro GEN Atlas 2019 1 recurso online ISBN 9788595150393.

TAJRA, Sanmya Feitosa. Empreendedorismo: conceitos e práticas inovadoras. 2. ed. São Paulo: Draco, 2019. 152 p. (Série eixos. Gestão e negócios). ISBN 9788536531601.

CHIAVENATO, Idalberto. Empreendedorismo: dando asas ao espírito empreendedor. 5. ed. São Paulo: Atlas, 2021. 250 p. ISBN 9788597026801.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Curso	Eletricista de Sistemas de Energias Renováveis					
Disciplina	Eletricidade Básica A	plicada a Sistemas Fotovoltaicos Período : 1º				
C		Nº de Aulas				
Carga Horária	48,3 h.	Teóricas	Práticas	Tot	al	
		42	16	58	3	

Ementa

Conceitos básicos sobre eletrostática e eletrodinâmica: Estrutura do átomo; Carga e matéria; Força elétrica e Lei de Coulomb; Conceito de campo elétrico; potencial elétrico e diferença depotencial elétrico; Conceito de corrente elétrica; condutores e isolantes; Resistência e resistividade; Circuito elétrico. Conceitos básicos sobre as leis do Ohm e Kirchhoff. Conceitosbásicos sobre potência elétrica e energia. Conceitos básicos de circuitos elétricos de corrente elétrica contínua e alternada, circuitos elétricos monofásicos e trifásicos (parâmetros elétricos como: tensão elétrica, corrente elétrica, potência elétrica).

Ênfase Socioambiental

_

Ênfase Profissional

Compreender os conhecimentos básicos sobre a eletrostática e eletrodinâmica e as principais grandezas elétricas. Compreender os conceitos e realizar cálculos aplicando as leis de Ohm e de Kirchhoff. Compreender os conceitos e realizar cálculos de potência e energia elétrica. Compreender conceitos sobre circuitos elétricos de corrente contínua e corrente alternada.

Bibliografia Básica

BOYLESTAD, Robert L. Introdução à análise de circuitos. 12. ed. São Paulo: Pearson, 2013.959 p. ISBN 9788564574205.

CAPUANO, Francisco Gabriel; MARINO, Maria Aparecida Mendes. Laboratório de eletricidade e eletrônica: teoria e prática. 24. ed. São Paulo: Érica, 2017. 312 p. ISBN 9788571940161.

Bibliografia Complementar

ALBUQUERQUE, Rômulo Oliveira. Análise de circuitos em corrente alternada. 2. ed. SãoPaulo: Érica, 2009. 236 p. (Coleção estude e use.). ISBN 9788535501437.

MARKUS, Otávio. Circuitos elétricos: corrente contínua e corrente alternada: teoria e exercícios. 9. ed. São Paulo: Érica, 2018. 304 p. ISBN 9788571947689.

ROBBINS, Allan H.; MILLER, Wilhelm C. Análise de circuitos: teoria e prática. 4. ed. SãoPaulo: Cengage Learning, 2017. v. 1 ISBN 9788522106622.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Curso	Eletricista de Sistemas de Energias Renováveis				
Disciplina	*	perimental aplicada a Sistemas Fotovoltaicos Período: 1°			1°
~		Nº de Aulas			
Carga Horária	16,67 h.	Teóricas	Práticas	s Total	
		6	14	20)

Ementa

Conceitossobre instalações elétricas prediais/ residenciais e sistemas de aterramento aplicados a sistemasfotovoltaicos: Realização de práticas sobre os temas. Leitura e interpretação de desenhos técnicos.

Ênfase Socioambiental

_

Ênfase Profissional

Executar instalações elétricas residenciais e a instalação do sistema de aterramento. Interpretar desenhos técnicos. Leitura e interpretação de desenhos técnicos.

Bibliografia Básica

BOYLESTAD, Robert L. Introdução à análise de circuitos. 12. ed. São Paulo: Pearson, 2013. 959 p. ISBN 9788564574205.

CAPUANO, Francisco Gabriel; MARINO, Maria Aparecida Mendes. Laboratório de eletricidade e eletrônica: teoria e prática. 24. ed. São Paulo: Érica, 2017. 312 p. ISBN 9788571940161.

Bibliografia Complementar

ALBUQUERQUE, Rômulo Oliveira. Análise de circuitos em corrente alternada. 2. ed. São Paulo: Érica, 2009. 236 p. (Coleção estude e use.). ISBN 9788535501437.

MARKUS, Otávio. Circuitos elétricos: corrente contínua e corrente alternada: teoria e exercícios. 9. ed. São Paulo: Érica, 2018. 304 p. ISBN 9788571947689.

ROBBINS, Allan H.; MILLER, Wilhelm C. Análise de circuitos: teoria e prática. 4. ed. São Paulo: Cengage Learning, 2017. v. 1 ISBN 9788522106622.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Curso	Eletricista de Sistemas de Energias Renováveis					
Disciplina	Medidas elétricas ap	plicadas a Sistemas Fotovoltaicos. Período : 1º				
		Nº de Aulas				
Carga Horária	16,67 h.	Teóricas Prática		Tot	tal	
		6	14	20)	

Ementa

Manuseio de instrumentos de medição das grandezas elétricas (voltímetro, amperímetro, wattímetro, megômetro).

Ênfase Socioambiental

_

Ênfase Profissional

Conhecer e utilizar corretamente os instrumentos de medição das grandezas elétricas.

Bibliografia Básica

BOYLESTAD, Robert L. Introdução à análise de circuitos. 12. ed. São Paulo: Pearson, 2013. 959 p. ISBN 9788564574205.

CAPUANO, Francisco Gabriel; MARINO, Maria Aparecida Mendes. Laboratório de eletricidade e eletrônica: teoria e prática. 24. ed. São Paulo: Érica, 2017. 312 p. ISBN 9788571940161.

Bibliografia Complementar

ALBUQUERQUE, Rômulo Oliveira. Análise de circuitos em corrente alternada. 2. ed. São Paulo: Érica, 2009. 236 p. (Coleção estude e use.). ISBN 9788535501437.

MARKUS, Otávio. Circuitos elétricos: corrente contínua e corrente alternada: teoria e exercícios. 9. ed. São Paulo: Érica, 2018. 304 p. ISBN 9788571947689.

ROBBINS, Allan H.; MILLER, Wilhelm C. Análise de circuitos: teoria e prática. 4. ed. São Paulo: Cengage Learning, 2017. v. 1 ISBN 9788522106622.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Curso	Eletr	ricista de Sistemas de Energias Renováveis				
Disciplina	Fundamentos d	de Energia Solar Fotovoltaica. Período : 1º				
Carga Horária		Nº de Aulas				
	15 h.	Teóricas	Práticas	Tot	al	
		14	14 4		}	
Emanta						

Ementa

Fontes renováveis e não renováveis de energia. Estatísticas globais e nacionais de uso da energia. Situação energética brasileira. Legislação vigente (RN 482, RN 687, normas de concessionárias locais). Insolação. Radiação solar. Tipos de irradiação solar. Movimento relativo Terra-Sol. Grandezas relacionadas com a irradiação solar (tipos). Medição das grandezas relacionadas com a irradiação solar (equipamentos e estações solarimétricas). Valores típicos da irradiação solar no Brasil. Fontes de dados de valores da irradiação solar. Conversão direta da irradiação solar em calor e em eletricidade (sistemas básicos). Escolha do posicionamento ideal para maximizar a energia captada. Uso correto de dispositivos auxiliares par a caracterização de sistemas solares tais como bússola, trena, inclinômetro.

Ênfase Socioambiental

-

Ênfase Profissional

Entender o contexto global e nacional da energia elétrica (geração, distribuição e utilização). Compreender a irradiação solar e sua origem. Compreender as grandezas e os valores da irradiação solar. Conhecer as formas de aproveitamento da energia solar e sua captação máxima.

Bibliografia Básica

MELO, Francisca Dayane Carneiro. **Instalador de sistemas fotovoltaicos**. Brasília: Profissionais para energias do futuro, 2018.

MELO, Francisca Dayane Carneiro. **Especialista técnico em energia solar fotovoltaica**. Brasília: Profissionais para energias do futuro, 2018.

Bibliografia Complementar

BALFOUR, John; SHAW, Michael; NASH, Nicole Bremer. **Introdução ao Projeto de Sistemas Fotovoltaicos**. São Paulo: LTC, 2016.

VILLALVA, Marcelo Gradella; GAZOLI, Jonas Rafael. **Energia solar fotovoltaica: conceitos e aplicações.** 1. ed. São Paulo: Érica, 2015. 224 p. ISBN 9788536504162.

MOREIRA, José Roberto Simões. **Energias Renováveis, Geração Distribuída e Eficiência Energética**. 1. ed. São Paulo: LTC, 2017. 420 p. ISBN 9788521633778.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Curso	Eletricista de Sistemas de Energias Renováveis				
Disciplina	Tecnologia Solar	Fotovoltaica: Módulos, Arranjo, Células. Período: 1°			
	Nº de Aulas				
Carga Horária	15 h.	Teóricas	Práticas	Tot	al
Horaria		9	9	18	3

Ementa

Compreender as características das células fotovoltaicas. Estudo sobre tipos, produção e aspectos construtivos dos diversos tipos de células fotovoltaicas e seus princípios teóricos. Interpretação da curva I x V de uma célula fotovoltaica. Processo de construção de um núcleo fotovoltaico. Características técnicas, componentes e parâmetros de funcionamento dos principais tipos de núcleos fotovoltaicos. Fatores que afetam a eficiência de um núcleo fotovoltaico. Estudo sobre arranjos em série e em paralelo das células fotovoltaicas. Utilização de diodos de desvio e de fileira. Caixa de ligações. Efeito das condições ambientes e locais (temperatura, sombreamento, etc.) sobre núcleos e arranjos fotovoltaicos.

Ênfase Socioambiental

A D e :

Ênfase Profissional

Compreender o efeito fotovoltaico. Conceitos básicos relacionados ao efeito fotovoltaico. Conhecer as características e os componentes de diferentes tipos de núcleos fotovoltaicos. Identificar as características e os parâmetros relacionados aos arranjos fotovoltaicos.

Bibliografia Básica

MELO, Francisca Dayane Carneiro. **Instalador de sistemas fotovoltaicos**. Brasília: Profissionais para energias do futuro, 2018.

MELO, Francisca Dayane Carneiro. **Especialista técnico em energia solar fotovoltaica**. Brasília: Profissionais para energias do futuro, 2018.

Bibliografia Complementar

BALFOUR, John; SHAW, Michael; NASH, Nicole Bremer. **Introdução ao Projeto de Sistemas Fotovoltaicos**. São Paulo: LTC, 2016.

VILLALVA, Marcelo Gradella; GAZOLI, Jonas Rafael. Energia solar fotovoltaica: conceitos e aplicações. 1. ed. São Paulo: Érica, 2015. 224 p. ISBN 9788536504162. MOREIRA, José Roberto Simões. Energias Renováveis, Geração Distribuída e Eficiência Energética. 1. ed. São Paulo: LTC, 2017. 420 p. ISBN 9788521633778.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Curso	Eletricista de Sistemas de Energias Renováveis				
Disciplina		icos: Isolados, conectados à Rede, Bombeamento de Água. Período: 1º			
G		Nº de Aulas			
Carga Horária	23,3 h.	Teóricas	Práticas	Total	
		14	14	28	3

Ementa

Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos isolados. Medição de parâmetros em sistemas fotovoltaicos isolados. Normas relacionadas com os sistemas fotovoltaicos isolados. Características dos equipamentos e componentesutilizados em sistemas fotovoltaicos conectados à rede. Medição de parâmetros em sistemas fotovoltaicos conectados à rede. Normas relacionadas com os sistemas fotovoltaicosconectados à rede. Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos de

bombeamento de água. Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos de iluminação. Características dos equipamentos e componentes utilizados em sistemas fotovoltaicos híbridos. Normasrelacionadas com outras aplicações dos sistemas fotovoltaicos. Instalação elétrica (quadro elétrico, cabeamento, proteções contra descargasatmosféricas, disjuntores, fusíveis e outros elementos do circuito elétrico) relacionada com cada aplicação.

Ênfase Socioambiental

-

Ênfase Profissional

Compreender o funcionamento dos equipamentos envolvidos na instalação de Sistemas Fotovoltaicos: Isolados, conectados à Rede, Híbridos, Bombeamento de Água.

Bibliografia Básica

MELO, Francisca Dayane Carneiro. **Instalador de sistemas fotovoltaicos**. Brasília: Profissionais para energias do futuro, 2018.

MELO, Francisca Dayane Carneiro. **Especialista técnico em energia solar fotovoltaica**. Brasília: Profissionais para energias do futuro, 2018.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Bibliografia Complementar

BALFOUR, John; SHAW, Michael; NASH, Nicole Bremer. **Introdução ao Projeto de Sistemas Fotovoltaicos**. São Paulo: LTC, 2016.

VILLALVA, Marcelo Gradella; GAZOLI, Jonas Rafael. **Energia solar fotovoltaica: conceitos e aplicações.** 1. ed. São Paulo: Érica, 2015. 224 p. ISBN 9788536504162.

MOREIRA, José Roberto Simões. **Energias Renováveis, Geração Distribuída e Eficiência Energética**. 1. ed. São Paulo: LTC, 2017. 420 p. ISBN 9788521633778.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

Curso	Eletr	ricista de Sistemas de Energias Renováveis				
Disciplina	Montagem o	de Sistemas Fotovoltaicos. Período : 1º				
		Nº de Aulas				
Carga Horária	48,3 h.	Teóricas	Práticas	Tot	al	
Horaria		16	42	48	3	

Ementa

Montar estrutura de suporte. Instalar núcleos fotovoltaicos em telhados. Instalar e ativar um sistema solar fotovoltaico conectado à rede. Instalar e ativar outros tipos de sistemas solares fotovoltaicos. Instalar e ativar um sistema solar fotovoltaico isolado. Aplicar normas de instalações de arranjos fotovoltaicos, de instalações elétricas de baixa tensão, SPDA, aterramento e outras afins.

Ênfase Socioambiental

Ênfase Profissional

Montar estrutura de suporte. Instalar núcleos fotovoltaicos em telhados. Instalar e ativar um sistema solar fotovoltaico conectado à rede. Instalar e ativar outros tipos de sistemas solares fotovoltaicos. Instalar e ativar um sistema solar fotovoltaico isolado. Aplicar normas de instalações de arranjos fotovoltaicos, de instalações elétricas de baixa tensão, SPDA, aterramento e outras afins.

Bibliografia Básica

MELO, Francisca Dayane Carneiro. **Instalador de sistemas fotovoltaicos**. Brasília: Profissionais para energias do futuro, 2018.

MELO, Francisca Dayane Carneiro. **Especialista técnico em energia solar fotovoltaica**. Brasília: Profissionais para energias do futuro, 2018.

Bibliografia Complementar

BALFOUR, John; SHAW, Michael; NASH, Nicole Bremer. **Introdução ao Projeto de Sistemas Fotovoltaicos**. São Paulo: LTC, 2016.

VILLALVA, Marcelo Gradella; GAZOLI, Jonas Rafael. **Energia solar fotovoltaica: conceitos e aplicações.** 1. ed. São Paulo: Érica, 2015. 224 p. ISBN 9788536504162.

MOREIRA, José Roberto Simões. **Energias Renováveis, Geração Distribuída e Eficiência Energética**. 1. ed. São Paulo: LTC, 2017. 420 p. ISBN 9788521633778.

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SERGIPE

APÊNDICE - DECLARAÇÃO DO(A) DIRETOR(A) GERAL

Eu, **Sônia Pinto de Albuquerque Melo**, matrícula SIAPE 1499584, Diretora Geral do Campus Estância nomeada pela Portaria IFS nº 3311/2018, declaro que o referido campus possui estrutura física e de pessoal suficientes para oferecer o curso de Formação Inicial e Continuada de Eletricista de Sistemas de Energias Renováveis, pelo que estou de acordo com sua oferta e solicito à PROEN viabilizar os encaminhamentos necessários à sua aprovação.

Sônia Pinto de Albuguerque Spelo

Sónia Piggode Albuquenque Melo IFS / Campus Estància Diretora Geral